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Abstract. We study the problem of a travelling salesman who must visit a randomly chosen 
subset of sites of a d-dimensional lattice. The average length of the shortest path per 
chosen site is a ( q )  where ( I  - q )  is the density of chosen sites. For a triangular lattice, 
we show that a ( q )  differs from 1 only by terms of order q 5 .  For the square lattice, we 
show that, to first order in q. optimal paths can be found from the dynamics of a model 
of a one-dimensional gas of kinks and antikinks. We find a ( 9 )  s 1 +terms of-order q3’2. 
We also obtain a constructibe upper bound valid for all q, which gives a (  9 )  < 4; (1  - 9)  
as q tends to 1. 

1. Introduction 

The travelling salesman problem (TSP) is a well known optimisation problem. The 
object is to find the shortest route of a travelling salesman (TS) who must visit each 
of N specified cities at least once, given the intercity distances. The problem belongs 
to the non-deterministic polynomial-time complete (NP-complete) class of problems: 
all known deterministic algorithms for finding the optimal route require a computational 
effort that increases exponentially with N (Garey and Johnson 1979). Several heuristic 
algorithms for generating suboptimal tours are known and, if the number of cities is 
not too large, branch and bound methods can be used to find the optimal tours as 
well. For a comparative study of performance of several heuristics and a good review 
of other theoretical results, see Lawler er a1 (1985). 

The definition of a finite-temperature problem (Kirkpatrick 1984) which has the 
shortest route as its ground state has led to a recent upsurge of interest in this problem. 
The method of simulated annealing (Kirkpatrick 1984) is an outcome of this idea, as 
is the realisation that the problem has many features in common with spin glasses 
(Kirkpatrick 1981, Vannimenus and Mezard 1984, Kirkpatrick and Toulouse 1985, 
Baskaran er a1 1986, Fu and  Anderson 1986, MCzard and Parisi 1986a, b, Sourlas 1986). 
Bonomi and  Lutton (1984) have used simulated annealing to obtain a near-optimal 
solution for a configuration of 10 000 cities placed randomly on a plane. The lattice 
version of the TSP has been studied recently on a diluted lattice by Chakrabarti (1986) 
and on the Sierpinski gasket by Bradley (1986). 

In this paper we shall consider the case where the cities to be visited are placed 
randomly on the vertices of a d-dimensional periodic lattice, the fractional number of 
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sites chosen being p. The fractional number of sites that do not have to be visited is 
q = 1 - p .  In  one step, the salesman can move from a site of the lattice to any of the 
neighbouring sites. 

Let the number of sites in the lattice be N .  Let P(C) be the shortest tour for a 
given configuration C of chosen sites. The length of the path I ( $ )  is defined as the 
total number of steps in the path. I ( $ )  is a random variable depending on the 
configuration @. For large N,  I ( $ )  varies linearly with N. In fact, it can be shown 
(Beardwood et a1 1959) that the limit 

a ( q ) =  lim 
N-rcr  (1 - q ) N  

exists with probability 1. This represents the average length of the minimising path 
(measured in terms of lattice spacings) between two consecutive occupied sites in P. 
a ( q )  depends on the lattice structure. In  this paper, we obtain constructive upper 
bounds for a ( q )  and determine its qualitative behaviour near q = 0 and  q = 1. 

The plan of the paper is as follows. After a brief discussion of the general qualitative 
behaviour of a ( q )  for arbitrary lattices in § 2, we discuss the case of the triangular 
lattice in 9 3. We show that in this case for q near 0, a ( q )  differs from one only by 
terms of order q 5 .  For the square lattice, the problem is more difficult. In $4, we 
describe two strategies which provide upper bounds to a (  q )  for all q, 0 < q s 1. In § 5 
we give an explicit construction of a route on the square lattice which avoids vacancies 
to order q and which can be viewed as defining kink-antikink dynamics with pair 
production at vacancies and pairwise annihilation and scattering. 

2. Preliminaries 

For any walk, the number of steps cannot be less than the number of sites visited 
(excluding the origin of the walk). Clearly, for all q, and all lattices 

a ( q )  3 1. (2)  
Also a ( 0 )  = 1 for hypercubic lattices. The optimal (non-unique) path in the q = 0 case 
is a self-avoiding walk going through all the sites of the lattice. The number of such 
walks (called Hamilton walks) is known to grow exponentially with the size of the 
lattice (Kasteleyn 1963). The number of optimal paths presumably remains exponential 
in N, even for q # 0. The dependence of this number on q is difficult to study and 
will not be discussed here. 

The optimal path length cannot increase if a site is removed from the set of chosen 
sites. Since this quantity per lattice site is (1 - q ) a ( q ) ,  we have 

This implies in particular that 
(d /dq) [ ( l  - q ) a ( q ) l s 0 *  (3)  

(1 - q ) a ( q ) s  a ( 0 )  = 1. (4) 
This provides an upper bound a ( q )  1/ (1-  q )  which is saturated in the trivial case 
d = 1. 

For q = 1, the average separation between occupied sites increases as (1  - q ) - ” d  
where d is the dimension of the lattice. Since a ( q )  should scale linearly with the 
average separation then 

[Y (4)  A( 1 - q ) - ” d  for q +  1 ( 5 )  
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where A is a constant of proportionality. This has been proved rigorously by Beardwood 
et a1 (1959). When p is non-zero, a ( q ) p ' l d  is not constant due to the influence of the 
lattice structure. We expect (but have no proof) that A is less than one and a ( q ) ( l  - 
q ) ' l d  is a monotonically decreasing function of q. For the continuum model with a 
Euclidean metric in two dimensions, Armour and  Wheeler (1983) have shown that 
A,s0 .921 ,  where the subscript E refers to the Euclidean metric. AE is not known 
exactly. Numerical estimates from finite samples give (Beardwood et a1 1959, Bonomi 
and Lutton 1984, Randelman and Grest 1986) 

AE 0.75. (6) 
When the distance is measured along bonds of the lattice (e.g. in equation ( 5 ) ) ,  

the distance is larger than the Euclidean distance, and hence A is larger than A E .  An 
upper bound for A in (5) can be obtained in terms of AE as follows. For a given 
configuration C of sites, construct the Euclidean TS path. Then construct a TS path 
PE on the lattice, visiting the cities in the same sequence. In a direction 8 from the x 
axis the lattice distance is (Icos81 +Isinel) times the Euclidean distance. Assuming the 
rotational symmetry of the Euclidean TS path, all directions of 8 of the straight line 
joining two consecutive cities are equally likely. The average value of (Icos8( + Isinel) 
is 4 / ~ .  This gives 

AE G A S  4AE/ T == 0.96. (7)  
For p # 1 ,  the inequality in (2)  is strict as then, on any lattice, there exists a finite 

density of occupied sites having only one occupied neighbour. A salesman visiting 
these sites must either visit the occupied neighbour twice or visit at least once one of 
the unoccupied neighbours. For each such branch site, the contribution to excess path 
length (i.e. path length minus number of visited occupied sites) increases by at least 
one. On a lattice with coordination number z, the density of such sites is zq'-'p2. In 
addition, there are isolated occupied sites, with no occupied neighbours (density p q ' ) ,  
which necessitate at least two visits to unoccupied neighbours. This gives 

(8)  
These are relatively large orders in 9. We conjecture that this estimate correctly 

describes the behaviour near q = 0. In the Taylor expansion of a (  q )  in powers of q 

a ( q )  3 1 + zp2q2-' + 2pq;. 

r 

a ( q ) =  1 +  c C,q' ( 9 )  

c, = o  for 1 is z -2 .  (10) 

, = I  

we must have 

For some lattices this conjecture can be proved by a constructive argument. The case 
of the triangular lattice is described in the next section. 

Since on a hypercubic lattice z is 2d, (9)  and (10) would imply that, as d +cc for 
q fixed, a ( q )  should approach one. In this connection it should be noted that the TSP 

on the Cayley tree (which represents the d + m  limit in many other cases) is quite 
different. This is because the Cayley tree has no closed loops, so that a particular 
unoccupied site can be skipped only if it, and all its descendants, are unoccupied; the 
probability of this is small. An explicit formula for a ( q )  on a Cayley tree with m 
generations (and coordination number z)  can be worked out explicitly: 
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where 

Note that a ( q  = 0) is not one as no Hamilton walks are possible on the Cayley tree. 

3. The triangular lattice for q near zero 

Consider first the case q = 0. We consider a special Hamiltonian walk on a large lattice 
(figure 1 ( a ) ) .  The several strands shown in the figure are joined at the boundary of 
the lattice to form a single path, to be called the standard route. We shall ignore the 
surface contributions, as they are negligible in the thermodynamic limit. 

I f  there is a single unoccupied site (the crossed site in the upper-right corner of 
figure l ( b ) ) ,  the standard route can be modified so that the salesman skips the 
unoccupied site, going directly from the preceding to the next site in a single step. If 
there are several unoccupied sites well separated from each other, the standard route 
can be locally modified to skip them independently. Clearly one path length is saved 
for each site omitted. 

x x  
X x 

(a )  161 

Figure 1. ( a )  The standard route on the triangular lattice. ( b )  An example of how small 
clusters of vacant sites can be avoided by locally deforming the standard route. Here the 
vacant sites are represented by crosses. 

A similar local modification of the standard route can be found to accommodate 
small clusters of unoccupied sites. In figure l ( b ) ,  we show how the standard route 
may be modified locally to skip a cluster of four unoccupied sites, saving four steps 
of path length. 

There is only a finite number of configurations with up to four nearby unoccupied 
sites (‘nearby’ here does not necessarily imply neighbouring; only sufficiently close 
that the standard route cannot be modified independently to skip them). We found 
that it is possible to modify the standard route locally for each such configuration, 
skipping all four sites without having to visit any other site twice (details omitted). 

To order q4, only such configurations occur, and therefore a ( q )  is one on the 
triangular lattice to this order. This proves that (8) holds for the triangular lattice, for 
which z = 6 .  
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For the square lattice too (or other bipartite hypercubic lattices) we expect (9) and 
(10) to hold. However, we have to use non-local modifications of paths to prove this 
assertion. Because of strong odd-even effects on such lattices, a salesman can only 
be on odd sites after an  odd number of steps. Hence a local modification of a path 
avoiding a single unoccupied site and decreasing the path length by one is clearly 
impossible. This makes the construction of paths avoiding well separated defects quite 
difficult. The strategy discussed in 9 5 gives 

a (  q )  = 1 +terms of order q3". (13) 

This implies, in particular, that for the square lattice 

c1 = 0. 

4. Foliation on the square lattice 

We now construct an upper bound for a ( q )  for the square lattice, using a variant of 
the foliation strategy discussed by Armour and Wheeler (1983) in the continuum case. 
Other lattices may be treated similarly but will not be discussed explicitly here. 

The principal idea is to divide the lattice into strips of L columns each and let the 
salesman move down each strip row by row, avoiding vacant sites when possible. The 
value of L is chosen to minimise the average length of tour and depends on q. 

We will discuss two foliation strategies denoted by F1 and F2 respectively. Figure 
2 illustrates both, with walks on strips of width L = 5. In either case, the path consists 
of several horizontal steps (left or right) followed by a single vertical step down to the 
next row. Let I ,  and r,  be the x coordinate of the leftmost and rightmost occupied 
sites in the nth row. I f  the entire row is unoccupied, we define I ,  = L +  1 and r, = 0. 
Let x, be the horizontal coordinate of the vertical step leaving the nth row. 

In strategy F1, we define 

xn =min(l,,  I n + , ,  ~ ~ - 1 )  if n is odd ( 1 5 0 )  

and 

xn =max(x,-, , rn, r n + , )  if n is even. (15b) 

X 

X 

X x&?i la) ;, Ib) 

Figure 2. Foliation strategies F1 and F2 are illustrated. In the example 
same configuration of unoccupied sites, the path in ( a )  using the strategy 
two steps than that in ( b )  using strategy F2. 

shown, for the 
F1 is longer by 
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The salesman’s path consists of leftward steps on odd rows (up  to x ~ , , + ~  on the (2n + 1)th 
row) and  rightward steps on even rows. 

In strategy F2, no distinction is made between even and  odd rows. On entering 
the nth row at x,-, , the salesman first goes to the left or the right endpoint (of occupied 
sites) I ,  or  r,, whichever is closer. He then goes to the other endpoint (retracing some 
steps if necessary) and then takes a step down to the next row. Thus 

x, = r, if f ( r ,  + I , )  < x,_l ( 1 6 a )  

( 1 6 b )  

If x, is exactly halfway between I ,  and r,, then the exit point is chosen to be either 
of them with equal probability. If the entire row is unoccupied, then x, is equal to x , -~ .  

In both strategies F1 and F2, it is clear that every occupied site in a strip is visited 
at least once. Of course, some unoccupied sites are also visited. Since x ,+~  depends 
only on x, and the configuration of row n + 1 (and also row n + 2  in the case of F1) 
the sequence of x, forms a Markov chain. Let the transition probability matrices for 
the strategies F1 and F2 be denoted by TI  and T2 respectively. 

= I ,  if +( r, + I, ,  ) > x,- . 

First consider T I .  We define a variable 

Y n  = X n  when n is odd ( 1 7 a )  

= L +  1 - x, when n is even. ( 1 7 b )  

Then we have 

T l ( y n + l l y , , j  = 42(’nv*l-1) ( 1  - q 2 )  i f y , + , < L + l - y ,  ( 1 8 ~ )  

i f y , + l = L + l - y ,  ( 1 8 b )  = q * ( ’ , , * , - l )  

= O  otherwise. (18c) 

prob( y ,  = r )  = A4” 

By inspection, the steady state probabilities for y ,  are 

(19) 

where A is a normalisation constant. The path length saved is 2y,, in going from row 
i to row i +  1.  The mean saving per row is? 

From S ( L )  one can easily find the average path length per visited site for F1 

a l ( q ) =  (1 - S ( L ) I L ) l p .  (21) 
We choose L so as to minimise a ( q ) .  We find that L = 2 for 0 < q < 0.551; L = 3 for 
0.763 > q > 0.551 and L = 4 for 0.855 > q > 0.763. As q + 1 ,  the optimal value of L is a, and G a l ( q )  approaches 4 It is interesting to compare this value with that of 
Armour and Wheeler. Their optimal value of L is the same as here, but G a ( q )  is 
lower, 0.921, due to the different metric (Euclidean) used. In figure 3 we show G a l ( q )  
against q. The strategy works best for 4 close to 1 and performs relatively poorly for 
intermediate and low q. 

t In the limit L+CO only the first term of (20) survives, describing the path length saved by a ‘directed 
salesman’ (Chakrabarti 1986). 
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4 

Figure 3. A comparison of the efficiencies of the strategies F1 and F2 on the square lattice. 
The path length per occupied site is denoted by o ( q ) .  The lowest line shows the exact 
slope of p"'o(q)  at q = o .  

The strategy F2 works much better in this regime. The corresponding transition 
matrix T2 is given here explicitly only for L = 3 

q 2  P 9 + f P 2  

P P 9 + f P 2  
T 2 = G .  q 2  cp). ( 2 2 )  

The steady state values prob(r,) are proportional to the right eigenvector with unit 
eigenvalue and are easily seen to be 

prob(r, = 1) = prob(r, = 3 )  = ( 1  + q ) / ( 2 + 4 q )  

prob( r, = 2 )  = q / (  1 + 2 q ) .  

( 2 3 0 )  

( 2 3 b )  

As illustrated in figure 2( b ) ,  the horizontal distance traversed in the nth row depends 
not only on x , -~  and x, but also on I ,  and r , .  But once we know the probabilities 
prob( rn- l ) ,  we can easily compute the average number of horizontal bonds traversed 
in the nth row for different configurations of sites. We find 

4 4 ) = ( 1 - q / 2 ) / ( 1 - q )  for L = 2  ( 2 4 a )  

( 2 4 b )  = ( 1 + 2 p q ) / (  1 + 2 q )  for L = 3. 

Higher L values can be treated similarly. In figure 3 we have plotted the function 
f i a , ( q )  for p between 0.3 and 1. For small p ,  the estimate a , ( q )  works almost as 
well as a 2 ( q )  and in the coninuum limit p + 0, both strategies F1 and F2 are the same; 
f i a ( q )  tends to the limit 4; for both. 
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5. The square lattice for q near zero 

For the strategies F1 and F2, the value of the upper bound on G a  (9) is always greater 
than one. This is not very satisfactory, as the true function G a ( q )  is expected to be 
less than one. (On average, the path is shorter if the cities are randomly distributed 
than if they are arranged in a regular fashion as in a square grid with lattice spacing 
m for p = l / m 2 ,  cf (7 ) . )  We now show that a ( q )  has zero slope at q = 0, and hence 
the function ( 1  - q)”2a (9) is less than one for q sufficiently small. 

The strategy we shall use to obtain this upper bound is an improvement on the 
foliation strategy discussed in the preceding section. The main difference from the 
earlier strategy is that in this case the paths are not constrained to lie within a strip 
but are allowed to deform depending on the configuration. 

For q = 0, the standard route is composed of horizontal strands (or  layers) which 
run through the lattice and which are connected at the ends. For small non-zero q, 
layers are constructed recursively, proceeding from the bottom upwards. Let L denote 
the last strand to have been constructed. It consists of horizontal segments-which 
are typically quite long-with occasional vertical steps. The next strand L‘ consists of 
all the sites neighbouring those sites in L not yet covered by strands. The construction 
of segments of L’ close to various sorts of segments of L is described by the following 
rules ( a ) - ( e )  as depicted in the respective parts ( a ) - ( e )  of figure 4 .  

( a )  A horizontal stretch of L leads to a horizontal stretch in L’, provided no vacant 
site is encountered. 

( 6 )  If there is a vacancy in the row above a horizontal stretch of L, the strand L’ 
is deformed so as to avoid the vacancy. 

( c )  Where there is a vertical step in L, the next strand L‘ is formed by para’iel- 
shifting L in the manner illustrated. 

( d )  If there is a depression in L, formed by two adjacent vertical steps, the next 
strand is horizontal. 

( e )  If there is a depression in L, formed by two vertical steps which are two lattice 
spacings apart, the current strand L is revised in the manner shown and the next strand 
L’ caps the structure. 

An application of these rules to a specific configuration of vacant sites is illustrated 
in figure 5. The resulting TS path differs from the standard route (the path for the case 
q = 0 with all strands horizontal) primarily through the occurrence of vertical steps of 
height unity. We shall refer to a vertical step which increases (decreases) the height 
by one as a kink (antikink). It is interesting to identify the rules ( a ) - ( e )  with the 
(discrete) dynamics of a set of interacting kinks and antikinks on a line. Thus figure 
5 can be viewed as the spacetime diagram describing the evolution of a set of kinks 
and antikinks (the time direction being along the vertical). 

Kink-antikink pairs are created at vacancies (figure 4(6 ) )  and since these occur 
independently with probability q there is a homogeneous (stochastic) rate q of creation 
in this system. Once generated, a kink moves left one unit deterministically per unit 
time, and similarly an antikink moves rightwards (figure 4( c)). If there is an antikink 
exactly one step left of a kink, they annihilate each other in the next time step (figure 
4 ( d ) ) .  If the antikink is two steps left of a kink (figure 4 ( e ) )  then if they had continued 
to move according to rule (c )  they would be on top  of each other at the next time 
step. This is not allowed, and instead the kink becomes an antikink, and the antikink 
a kink, and then they move one unit to the right and left respectively according to rule 
( c ) .  
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Io1 
0 0 0 0 0 0 0  d L' 

L L 

1.1 LI 0 0 0  

0 0 0 x 0 0 0  + 
L L 

0 0 0 0 0  

0 0 0  L -  -J-j= 

0 0 0 0 0 0 0  L' 

UL --+ T L  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

L -  

Figure 4. Strategy rules for the TSP on the square lattice for q near O. Cases ( a ) - ( e )  show 
the construction of a strand L' in the neighbourhood of different configurations of the 
previous strand L. 

\ / 

I W l  
Figure 5. The TS strands resulting from the application of the strategy described in figure 
4 to a configuration with a small concentration of vacancies (denoted by crosses). The 
worldlines of kinks and antikinks are shown as broken lines. 
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It may be noted that in rules ( a ) - ( e )  we have not dealt with configurations which 
d o  not occur to order q. These include ( i )  a cluster of two or more vacancies and (ii) 
a vacancy close to a kink or antikink. In the application of the strategy, such vacancies 
are treated as occupied and  no attempt is made to avoid them. The number of kinks 
and antikinks at a given time scales inversely with the intervacancy separation and is 
proportional to 6. Hence the probability of a vacancy occurring in the immediate 
vicinity of a kink or antikink is q3”. The probability of occurrence of a cluster is even 
lower (of the order of q 2 ) .  Isolated vacancies, however, are successfully avoided and 
we save one step in the path length per vacancy. This gives us equation (13). 

The construction of a TS path which would give a ( q )  = 1 + O ( q 3 )  on the square 
lattice remains an open problem. Also a direct proof that p ’ l d a (  q )  s 1 for all q would 
be very desirable. 
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